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Performing decision-theoretic inference in
Bayesian network ensemble models

Michael Ashcroft

I. INTRODUCTION

Bayesian networks are a popular and powerful
tool in artificial intelligence. In certain circum-
stances, rather than using a single network, ’meta-
models’ are constructed and inference proceeds
using a (fitness-)weighted average of the individual
networks.

Individual networks can be extended for use in
decision theoretic applications. The point of this
paper is to explain how to generalize a common
decision theoretic inference algorithms to work on
such a meta-model. We will proceed by giving a
mathematical overview of what Bayesian networks
are and a brief explanation of how they are learnt
and the situations that lead to the use of meta-
models. We then examine the workhorse of exact
Bayesian inference algorithms, the Junction Tree
algorithm and looking at how to generalize it for
use in decision theoretic applications for single
networks. Finally, we see how to generalize the
algorithm further for its use in decision theoretic
applications for meta-models.

The junction tree algorithm presented follows
that given by [1]. The decision theoretic extension
of the algorithm is a simplification of that given in
[2]. The generalization to meta-models is original
work.

II. BAYESIAN NETWORKS

Recall from probability theory that two ran-
dom variables, X and Y , are independent if and
only if P (X,Y ) = P (X)P (Y ). Analogously, X
and Y are conditionally independent given a third
random variable Z if and only if P (X,Y |Z) =
P (X|Z)P (Y |Z), which is equivalent to:

P (X|Z) = P (X|Y,Z) (1)

Also recall that the chain rule for random
variables says that for n random variables,
X1, X2, ...Xn, defined on the same sample space
S:

P (X1, X2, ...Xn) = P (Xn|Xn−1, Xn−2, ...X1)

P (Xn−1|Xn−2, ...X1)

...P (X2|X1)P (X1)
(2)

Imagine we have five random variables:
{A,B,C,D,E}. From the chain rule, we know
that:

P (A,B,C,D,E) = P (E|A,B,C,D)

P (D|A,B,C)P (C|A,B)

P (B|A)P (A)
(3)

We can represent these five conditional indepen-
dencies by means of a directed acyclic graph (DAG)
and a set of conditional distributions, where:
• Each random variable is mapped to a node of

the DAG
• Each node has associated with it the condi-

tional distribution for its variable
• Each node has incoming edges from the nodes

associated with the variables on which the
node’s conditional distribution is conditional

Such a representation is a Bayesian network. It
satisfies the Markov conditions:

Definition A direct acyclic graph (DAG), G, with
nodes NG, a joint probability distribution, P , of
random variables DP , and a bijective mapping f :
DP ⇒ NG satisfies the Markov Condition if and
only if for all v ∈ DP , where n = f(v), v is
conditionally independent given P of the variables
that are mapped to the non-descendants of n given
the variables that are mapped to the parents n.

Node Conditional Independencies
A -
B C and E, given A
C B, given A
D A and E, given B and C
E A, B and D, given C

TABLE I: Conditional independencies required of random
variables the DAG in Figure 1 to be a Bayesian Network

If we know no more than the decomposition
given to us by the chain rule in equation 3, the as-
sociated Bayesian network’s DAG will be complete
(since each variable is conditional on all those prior
to it in the decomposition order). However, imagine
that we know that certain conditional independen-
cies exist as specified in table I. From the definition
of conditional independence, we know that:
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• P (C|B,A) = P (C|A)
• P (D|C,B,A) = P (D|C,B)
• P (E|D,C,B,A) = P (E|C)

Accordingly:

P (A,B,C,D,E) = P (E|C)P (D|C,B)

P (C|A)P (B|A)P (A)
(4)

Whenever we simply the conditional distribu-
tions in virtue of a known conditional independence
relation, we remove an edge on the DAG of our
Bayesian network representation. In this case, the
resulting network is given by figure 1.

A

B C

D E

Fig. 1: A DAG with five nodes

Loosely speaking, what we have done is pull
the joint probability distribution P apart by its
conditional independencies. A Bayesian network is
an encoding of these conditional independencies
in the DAG topology coupled with the simplified
conditional distributions. Note that the conditional
independencies are encoded by the absence of
edges.

III. LEARNING BAYESIAN NETWORKS FROM
DATA

A Bayesian network can be specified from ex-
pert knowledge. Alternatively, we can learn the
conditional independencies encoded in the network
from data. The basic procedure is to perform a
heuristic search on the space of possible sets of
conditional independencies in order to obtain the
best such set. This is complicated by the fact
that multiple topologies can encode the same set
of conditional independencies. To overcome this,
we instead search equivalence classes of topolo-
gies/conditional independence sets [3].

In the discrete case, an algorithm exists that
includes an optimality guarantee: As the size of our
learning data approaches infinity, the probability of
learning the globally optimal model (with a single
iteration of the algorithm) approaches 1 [4]. Where
the conditions are not met, a more general hill
climb algorithm produces better results. The result
is that the most robust learning algorithm utilizes
the inclusion boundary algorithm for its first search
and then repeatedly restarts the general hill climb
algorithm.

The most principled and popular fitness function
is the Bayesian Dirichlet score. This calculates the
aposteriori probability of a set of conditional in-
dependencies given the learning data. Accordingly
the network we obtain is that which represents the
most probable set of conditional independencies.

IV. META-MODELS

Often a single network structure dominates al-
ternatives. Where this is not the case, we can
collect multiple high scoring networks by, for ex-
ample, collecting all networks that are at least
1
x as probable as the best network, for some x.
These networks can be weighted by their relative
probability and inference can be performed over
the entire set. Effectively, we now reason using not
just our best hypothesis of the system structure, but
a set of plausible hypotheses, weighted for their
plausibility. This can be a very powerful method.

V. THE JUNCTION TREE ALGORITHM

This algorithm utilizes a secondary structure
formed from the Bayesian Network called a Junc-
tion Tree or Join Tree. We first show how to create
this structure.

Some Definitions:
• A cluster is a maximally connected sub-graph.
• The weight of a node is the number of values

its associated random variable has.
• The weight of a cluster is the product of the

weight of its constituent nodes.

Create (an Optimal) Junction Tree Algorithm

1) Take a copy, G, of the DAG, join all uncon-
nected parents and undirect all edges.

2) While there are still nodes left in G:
a) Select a node, n, from G, such that n causes

the least number of edges to be added in
step 2b, breaking ties by choosing the node
which induces the cluster with the least
weight.

b) Form a cluster, C, from n and its neighbors,
adding edges as required.

c) If C is not a sub-graph of a previously
stored cluster, store C as a clique.

d) Remove n from G.
3) Create n trees, each consisting of a single

stored clique. Also create a set, S. Repeat until
n−1 sepsets have been inserted into the forest:

a) Select from S the sepset, s, that has the
largest number of variables in it, breaking
ties by calculating the product of the num-
ber of values of the random variables in the
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Fig. 2: A simple Bayesian Network
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Fig. 3: The Junction Tree constructed from Figure 2

sets, and choosing the set with the lowest.
Further ties can be broken arbitrarily.

b) Delete s from S.
c) Insert s between the cliques X and Y only

if X and Y are on different trees in the
forest. (This merges their two trees into a
larger tree, until you are left with a single
tree: The Junction Tree.)

Before explaining how to perform inference us-
ing a Junction Tree, we define a potential over a
set of variables X is a function that maps each
instantiation x into a real number. Each clique and
sepset in the junction tree has a potential associated
with it.

We define operations on potentials in the fol-
lowing way. Let the variables of potential p1 are a
superset of the variables of p2. Let f be a function
p2 ⇒ p1 such that it assigns each instantiation
of the variables of p2 the unique instantiation of
the variables of p1 where the shared variables

Variable Value 1 Value 2 Value 3 Notes
A 1 1 1 Nothing known
B 1 0 0 Observed to be value 1.
C 1 0 1 Observed to not be value 2
D 0.75 0.2 0.05 Soft evidence, with actual probabilities
E 150 40 10 Soft evidence, assigns same probabilities as D

TABLE II: Evidence Potentials

take the same value. Likewise let g be a function
p1 ⇒ p2 such that it assigns each instantiation
of the variables of p1 the set of instantiations of
the variables of p2 where the shared variables take
the same value. Since we are dealing with discrete
cases, we will talk of each instantiation being a
row.
• Multiplying p1 into p2: Multiply each row, r,

in p2 by f(r).
• Marginalize out of p2 into p1: Assign each

row, r, in p1 the sum of all rows in g(r).
• Adding p1 into p2: Add to each row, r, in p2

the value of f(r).
• Maximize the variables not present in p1 out

of p2 into p1: Assign to each row, r, in p1 the
maximum value of g(r).

Division is defined as expected given multiplica-
tion, except that we define the division of a rows
value by zero to be zero. If you are unfamiliar,
an more detailed explanation of potentials and
operations on them is available at [1].

An evidence potential has a singleton set of
random variables, and maps real numbers to the
random variable’s values. If working with hard
evidence, it will map 0 to values which evidence
has ruled out, and 1 to all other values (where at
least one value must be mapped to 1). Where all
values are mapped to 1, nothing is know about the
random variables. Where all values except one are
mapped to 1, it is known that the random variable
takes the specified value. If working with soft ev-
idence, values can be mapped to any non-negative
real number, but the sum of these must be non-
zero. Such a potential assigns values probabilities
as specified by the its normalization.

We now require some definitions:
Message Pass

We pass a message from one clique, c1,
to another, c2, via the intervening sepset,
s, by:
1) Save the potential associated with s.
2) Marginalize a new potential for s,

containing only those variables in s,
out of c1.

3) Assign a new potential to c2, such that
pot(c2)new = pot(c2)old(pot(s)new

pot(s)old ).
Collect Evidence

When called on a clique, c, Collect Evi-
dence does the following:
1) Marks c.
2) Calls Collect Evidence recursively on

the unmarked neighbors of c, if any.
3) Passes a message from c to the clique

that called collect evidence, if any.
Disperse Evidence
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When called on a clique, c, Disperse
Evidence does the following:
1) Marks c.
2) Passes a message to each of the un-

marked neighbors of c, if any.
3) Calls Disperse Evidence recursively

on the unmarked neighbors of c, if
any.

After creating the Junction Tree, we must initial-
ize it. We can then perform inference on it.

Initialize Junction Tree Algorithm

1) Associate with each clique and sepset a prob-
ability potential, whose random variables are
those of the clique/subset, and which asso-
ciates with all value combinations of these
random variables the value 1.

2) Associate with each variable an evidence po-
tential representing current knowledge.

3) For each variable:
a) Assign the variable a clique, c, containing

the variable and its parents in the original
Bayesian network (it is certain to exist).

b) Multiply in the node’s conditional probabil-
ity distribution from the Bayesian network
to the probability potential associated with
c. (By ’multiply in’ is meant: multiply the
node’s conditional probability distribution
and the clique’s probability potential, and
replace the clique’s probability potential
with the result.)

Junction Tree Perform Inference Algorithm

1) For each variable:
a) Set its associated evidence potential to rep-

resent current knowledge.
b) Multiply this evidence potential into the

probability potential of the variable’s as-
signed clique.

2) Pick an arbitrary root clique, and call collect
evidence and then disperse evidence on this
clique:

3) For each node you wish to obtain a posteriori
probabilities for:

a) Select the smallest clique containing this
node.

b) Create a copy of the potential associated
with this clique.

c) Marginalize all other nodes out of the
clique.

d) Normalize the resulting potential. This is
the random variable’s a posteriori probabil-
ity distribution.

Note that the complexity of the algorithm is
dominated by the largest potential associated a
clique. Note also that a junction tree can be formed
from the smallest sub-graph containing the vari-
ables whose a posteriori probabilities we wish to
find that is ’d-separated’ (see [5] for a detailed
definition of d-separation) from the remainder of
the network by variables whose values we know.
We will term this ’network pruning’. It is a common
efficiency enhancement and, in complex networks,
can be necessary for tractability.

VI. THE DECISION THEORETIC JUNCTION TREE
ALGORITHM

When generalizing Bayesian networks for deci-
sion theoretic purposes, we introduce three new
types of variables. Firstly, utility variables which
specify the value to the user of the system being in
particular states. Secondly, decision variables which
are under the user’s control. Finally, information
variables which are variables not under the user’s
control that, if they are not currently known, will
be known before the performance of a particular set
of decisions. The last are no more than ordinary
chance variables which have a particular relation
with decision variables, but treating them as a
specific type of variable eases explanation. We will
term an information node that is known before a
decision d an information parent of d.

Extending the junction tree algorithm decision-
theoretically requires the stipulation of an informa-
tion order, which is a partial order which we will
refer to as the n-tuple I of sets of variables. We will
talk of appending a set of variables to I . Where I
is a tuple of n places, this means adding a new set
of variables to I in place n+ 1 such that I is now
a n+1-tuple. I is generated from a specification of
an order in which the decisions must be made as
well as the specification of information variables,
such that:

Information Order Generation Algorithm

1) Specify a decision order. This should be a
total order. In general, the actual order the
decisions must be made in will be partial, but
an arbitrary linear extension will transform it
to a total order.

2) Make a copy of the domain (the set of deci-
sion, chance and information variables - not
utilities), D.

3) For each decision node, d, in the order speci-
fied in the preceding step:

a) If there are information parents of d, append
these to I and remove them from D.
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b) If I is empty or the highest ordered variable
set in I contains non-decision variables,
append the singleton {d} to I .

c) Otherwise the highest ordered variable set
in I contains decision variables, and we add
d to that set.

d) Remove d from D.
4) Append D to I .
I will be an n-tuple where, assuming the exis-

tence of at least one decision, the set of variables
in places 1 to n − 1 will be alternating sets of
information parents and decision variables, and the
set in place n will be the remaining chance nodes.

We now make the following emendations to the
algorithms of the previous section. First, in the
Create a Junction Tree algorithm, we replace steps
1 and 2(a) with:

1′ Take a copy, G, of the DAG except for utility
nodes, join all unconnected parents including
those of the utility nodes, and undirect all
edges.

2 (a)′ Select a node, n, from G, such that:
(i) n is a lowest ordered remaining nodes,

as given by the information order.
(ii) n causes the least number of edges to

be added in step 2b, breaking ties by
choosing the node which induces the
cluster with the least weight.

One consequence of this is that the collect
evidence portion of the algorithm now possesses
an elimination order that respects the information
order.

Secondly, we supplement the Initialize Junction
Tree algorithm with two additional steps, the first
between steps (1) and (2), and the second at the
end:
1.5 Associate with each clique and sepset a utility

potential, whose random variables are those of
the clique/subset, and which associates with all
value combinations of these random variables
the value 0.

4 For each utility node, u, in the Bayesian net-
work, multiply in the node’s utility potential
to the utility potential associated the clique
containing all parents of u (it is certain to
exist).

We also redefine a message pass, separating it
into two cases:

Marginal Message Pass

We pass a message from one clique, c1, to
another, c2, via the intervening sepset, s, by:

1) Save the probability potential associated with
s.

2) Marginalize a new probability potential for s,
containing only those variables in s, out of c1.

3) Let Us, Uc, Ps and Pc be the utility and
probability potentials of s and c1 respectively.
Let Xy be the yth row of potential X . As-
sign values to Us such that for each row, r:
Ur
s = P r

s (
∑

s∈g(r)
Us

c

Us
p

)).
4) Assign a new probability potential to c2, such

that pot(c2)new = pot(c2)old(pot(s)new

pot(s)old ).
5) Add the utility potential of s to the utility

potential of c2.

Maximal Message Pass

As for a marginal message pass, except that we
replace step 2 with:

2. Create a new probability potential for s by
maximizing out of c1 those variables not
present in s.

We must also redefine collect and disperse evi-
dence:

Collect Evidence′

When called on a clique, c, Collect Evidence
does the following:

1) Marks c.
2) Calls Collect Evidence recursively on the un-

marked neighbors of c, if any.
3) Specify a target sepset, s, which is that which

separates c from the clique that called collect
evidence if such a clique exists, and ∅ other-
wise.

4) Divides the clique into a number of sub-
cliques, c1 to cn, where c1 = c and cn+1 lacks
the lowest nodes present in cn but not in s, as
given by the information order.

5) Proceeds to pass messages from cm to cm+1,
for 1 ≤ m < n, and from cn to s, where
a maximal message is passed if cm/cm+1

(or cn/s) consists of decision variables and
a marginal message otherwise.

• We collect the results of the maximization
steps in order to obtain decision policies
for the decision variables. A decision pol-
icy consists all variables in cm, and takes
rows take 1 when they correspond to the
maximum value of the decision variables
being maximized out, and 0 otherwise.
Note that multiplying cm by the resulting
decision policy and then marginalizing out
the decision variables results is equivalent
to maximizing out the decision variables.
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Disperse Evidence′

Disperse evidence is as before except that we
now make marginal message passes.

Again we should note that pruning is possible
and sometimes necessary. We now seek the smallest
sub-graph containing the variables whose a posteri-
ori probabilities we wish to find and the parents of
all utility nodes that is d-separated from the remain-
der of the network by variables whose values we
know. Also note that we impose more restrictions
on the generation of the junction tree, which can
result in larger cliques and hence, since complexity
is dominated by the largest clique, increased com-
plexity. The more decisions and information parents
specified the more restrictions are imposed.

VII. USING DECISION THEORETIC JUNCTION
TREES WITH META-MODELS

We can now explain what alterations must be
made to permit the above algorithms to function
when using a meta-model composed of multiple
networks, weighted by their relative fitness. Firstly,
we focus on an issue that was only briefly noted
above: Bayesian networks are pruned to obtain
the smallest sub-network capable of generating a
junction tree suitable for the case at hand. Since we
wish for decisions to be made given the informa-
tion available in the entire meta-model rather than
particular networks two conditions must be met:
• If a decision node is present in junction tree,

it must be present in all junction trees.
• If an information node is relevant to a decision

variable in any network, we include it in all
networks.

Accordingly, when creating multiple junctions
trees for use with a meta-model, we must, in
pruning the networks, follow an iterative algorithm
that takes into account the variables that will be
present in all junctions trees:

1) Create a set of nodes, Γ, consisting of the
variables which are utility parents and any
unknown variables we wish to predict the
aposteriori distributions of.

2) Repeat until stability achieved:
• For each network:

a) Find the pruned sub-network, N , that
will be required to generate the small-
est junction tree capable of calculat-
ing the aposteriori distributions of the
variables in Γ.

b) Insert into Γ any decision variables
present in N .

c) Insert into Γ any information parent
of any decision variable, d, in Γ that

is present in N and not D-Separated
from d.

Secondly, in formulating decision policies for de-
cision variables (or, equivalently, when maximizing
decision variables out during the collect informa-
tion phase of the inference algorithm) we must
incorporate the weighted information of all net-
works. To permit this, we require that all junction
trees respect a total ordering on decision variables.
Accordingly, we must alter 3 (b) and delete 3 (c) of
the Information Order Generation algorithm, giving
us:
3 b′ Append the singleton {d} to I .
3 c′ -

Finally, we perform inference of the junction
trees concurrently such that at each point when
a decision variable is to be maximized out, the
relevant potentials of all networks are weighted
by their network weight and summed together to
form a new potential. The result will be that the
decision is made given the weighted information
of all networks. To do so, we replace 2 in the
Maximize Message Pass algorithm with:
2′. Create a new probability potential for s by

maximizing out of c1 those variables not
present in s by:

a) Wait for all junction trees to get to this step.
b) Create a new potential over the decision

variable, d, and all its information parents,
with all rows taking the value 0.

c) For the junction tree associated with each
Bayesian network, n, (with cn1 being the
conditional probability table):
i) Marginalize out a new potential over the

decision variable and all its information
parents, tn, from cn1 .

ii) Multiply all values in tn by the weight
of network n.

iii) Add tn into d.
d) Maximize the decision variable out of d to

produce its decision policy.
e) For the junction tree associated with each

Bayesian network, n:
i) Multiply cd1 by d, creating a potential e.

ii) Marginalize a new probability potential
for s, containing those variables in e
except for d, out of e.

Note that we ensure that all junction trees may
have more (and will have at least as many) decision
and information parents as would be the case were
they being created for a single network model. This
can result in the imposition of more restrictions on
the generation of the junction tree, and hence larger
cliques and greater complexity. It can also make
pruning less effective. Interesting work remains to
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be done on establishing fall back methods when
such the algorithms given here are intractable.
One possibility is to calculate all junction trees
individually in the hope of finding decision policies
that hold in all cases.
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